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N = (4, 4) orbifold lattice theory by CKKU [3]. Catterall’s N = (2, 2) description pos-

sesses extra degrees of freedom compared to the target N = (2, 2) theory. If we remove

those extra degrees of freedom in a way keeping supersymmetry on the lattice, Catterall’s

description reduces to a model of the Sugino type.
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1. Introduction

Recently, several lattice gauge theories which preserve partial supersymmetry on the lat-

tice are proposed [1 – 14].1 The main purpose in these models is to solve the fine-tuning

problem in lattice regularizations of supersymmetric gauge theories. The models utilize the

topological twisting [24, 25] to pick up the subset of superalgebra which does not include

the infinitesimal translation. In this way, the partial supersymmetry can be preserved on

the lattice which explicitly breaks the infinitesimal translational invariance.

1There are other several supersymmetric lattice models which are not treated in this paper [15 – 23].
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There are several types of the model: The series of models proposed by Cohen-Kaplan-

Katz-Unsal-Endres [3 – 7] are “orbifold lattices” which are constructed from reduced super-

symmetric matrix models by the orbifold projection [26] and the deconstruction [27]. In

their way, the orbifold projection generates the lattice theory with preserved subset of su-

persymmetry of the target theory. The deconstruction dynamically generates space-time

by the vacuum expectation value 1√
2a

of bosonic link fields, where a denotes the lattice

spacing.

The other approach, proposed by Sugino [2, 9 – 12], are lattice regularizations of the

“topological field theory action” which is equivalent to the extended supersymmetric gauge

theory. In his approach, the BRST-like supercharges are preserved on the lattice because

such charges do not generate the infinitesimal translation.

Catterall proposed models [1, 13, 14] which are based on the Kahler-Dirac formalism

and the lattice analogue of differential forms [28]. In his models, the 1-form and 2-form fields

have to be complex because they are in the bi-fundamental representation of the lattice

gauge group and the hermiticity cannot be maintained under gauge transformations. Since

the counterparts of these 1- and 2-form fields in the target theory are hermitian, Catterall’s

models have extra degrees of freedom which we have to discard in the path-integral. If one

performs such truncation in a naive way, supersymmetry on the lattice would be broken.

Seemingly, these three types of model are quite different. There exist, however, close

relationships between them. We will clarify such relationships in this paper. This inves-

tigation of the relationships would be very useful to develop the lattice formulations of

supersymmetric theories. First, in section 2, we show that Catterall’s N = (2, 2) action [1]

can be embedded in CKKU’s N = (4, 4) action [3] under suitable field truncation. Then, in

section 3, we explain the relationship between Catterall’s “complexified” N = (2, 2) lattice

theory and Sugino’s theory of ref. [2]. For Catterall’s model to contain the correct numbers

of degrees of freedom compared to the target N = (2, 2) theory, we have to truncate extra

degrees of freedom. If we perform the truncation in a way keeping the supersymmetry

on the lattice, Catterall’s model becomes the N = (2, 2) model being similar to Sugino’s

model. Finally, in section 4, we explain that the N = (2, 2) supersymmetric lattice model

of the Sugino type can be directly derived from CKKU’s N = (4, 4) lattice theory by re-

stricting fields. We also explain that the derivation discards the quantum fluctuations of

scalar zero modes around the vacuum expectation value 1√
2a

. In section 5, we also give a

continuum analogue of the truncation of degrees of freedom. By this truncation, we can

obtain the continuum N = (2, 2) super Yang-Mills theory from the continuum N = (4, 4)

super Yang-Mills theory. Section 6 is devoted to conclusion and discussion.

2. Relationship between the N = (4, 4) CKKU model and the N = (2, 2)

Catterall model

Here we explicitly show that Catterall’s N = (2, 2) lattice model can be obtained by

truncating certain fields in the N = (4, 4) CKKU model.

– 2 –
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2.1 Q-exact form of the N = (4, 4) CKKU model

We explain the N = (4, 4) supersymmetric lattice theory proposed by CKKU in ref. [3]

very briefly. Here we neglect the soft supersymmetry breaking mass term in their theory.2

The action of the theory (eq. (3.14) of ref. [3]) is

S =
∑

n

Tr

[
∫

dθdθ

(

1

2
ΥnΥn +

1√
2
Sn(Zi,nZi,n − Zi,n−êi

Zi,n−êi
) − 1

2
ΞnΞn

)

+

∫

dθ
(

ǫij Ξn Zi,nZj,n+êi

)

−
∫

dθ
(

ǫij Ξn Zi,n+êj
Zj,n

)

]

,

(2.1)

where the sum over site n = {n1, n2} is taken in the interval n1,2 ∈ [1, N ] and ê1 and ê2

being unit vectors in n1 and n2 directions, respectively. The superfields are defined by

Zi,n = zi,n +
√

2 θψi,n −
√

2 θθ(z3,nzi,n − zi,nz3,n+êi
) ,

Zi,n = zi,n +
√

2 θǫijξj,n +
√

2 θθ(z3,n+êi
zi,n − zi,nz3,n) ,

Ξn = ξ3,n +
√

2 θG̃n −
√

2 θθ(z3,n+ê1+ê2
ξ3,n − z3,nξ3,n) ,

Ξn = χn −
√

2 θ ˜̄Gn +
√

2 θθ(z3,nχn − χnzn+ê1+ê2
) ,

Sn = z3,n +
√

2 θψ3,n +
√

2 θλn +
√

2 θθid̃n ,

Υn = λn − θ
(

id̃n + [z3,n, z3,n]+
)

−
√

2θθ[z3,n, λn] ,

Υn = ψ3,n + θ
(

id̃n − [z3,n, z3,n]
)

+
√

2θθ[z3,n, ψ3,n] ,

(2.2)

with

˜̄Gn = Gn −
√

2 ǫij zi,nzj,n+êi
,

G̃n = Gn −
√

2 ǫij zi,n+êj
zj,n, (2.3)

d̃n = dn − i(zi,n−êi
zi,n−êi

− zi,nzi,n).

In these expressions, θ, θ̄ are one-component Grassmann super coordinates. All variables

are M × M matrices satisfying periodic boundary conditions on the lattice, and there is

an independent U(M) symmetry associated with each site which becomes the U(M) gauge

symmetry of the continuum theory. The indices i, j run over 1 and 2 and all repeated indices

are summed. The variables za (a = 1, 2, 3) and za refer to complex bosonic variables and

their conjugates, while λ, χ, ψa and ξa refer to one-component Grassmann variables. Here

dn, Gn, Ḡn are auxiliary fields originally introduced in ref. [3]. These auxiliary fields are

integrated out yielding dn = Gn = Ḡn = 0.

2In CKKU’s models, there are flat directions in the scalar potential allowing large fluctuations around

the vacuum expectation value 1√
2a

. To stabilize the lattice structure, CKKU introduced the soft SUSY

breaking mass terms. In this section, we will investigate their model without such mass terms.

– 3 –
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The supersymmetry on the lattice can be read off from eq. (2.2). It is

δzi,n = i
√

2 η ψi,n,

δzi,n = iǫij

√
2 η ξj,n,

δψi,n = 2iη [zi,nz3,n+êi
− z3,nzi,n],

δξi,n = −2iǫij η [zj,nz3,n − z3,n+êj
zj,n],

δz3,n = i
√

2 (η ψ3,n + η λn),

δz3,n = 0,

δψ3,n = iη ([zi,n−êi
zi,n−êi

− zi,nzi,n] − [z3,n, z3,n] + idn) ,

δλn = −iη ([zi,n−êi
zi,n−êi

− zi,nzi,n] + [z3,n, z3,n] + idn) ,

δχn = iη [2(z1,nz2,n+ê1
− z2,nz1,n+ê2

) −
√

2 Gn],

δξ3,n = −iη [2(z1,n+ê2
z2,n − z2,n+ê1

z1,n) −
√

2Gn],

(2.4)

and

δGn = 2iη
(

ǫij (zi,nψj,n+êi
− ψj,nzi,n+êj

) + (z3,nχn − χnz3,n+ê1+ê2
)
)

,

δGn = −2iη

(

∑

i,j,with i6=j

(zi,n+êj
ξi,n − ξi,n+êi

zi,n) + (z3,n+ê1+ê2
ξ3,n − ξ3,nz3,n)

)

,

δdn = −
√

2η(zi,n−êi
ψi,n−êi

− ψi,nzi,n + [z3,n, ψ3,n])

+
√

2η(ǫij(zi,nξj,n − ξj,n−êi
zi,n−êi

) + [z3,n, λn]).

(2.5)

We may express the supersymmetry transformation by using two supercharges

δ = iηQ + iηQ. (2.6)

These charges Q, Q can be realized in terms of independent Grassmann coordinates θ and

θ as

Q =
∂

∂θ
+

√
2 θ[z3, · ]∗ , Q =

∂

∂θ
+
√

2 θ[z3, · ]∗ , (2.7)

where the operation [z3, · ]∗ represents the lattice gauge transformation with the parameter

z3. This operation [z3, · ]∗ acts on generic fields Pn living on the links as

[z3, Pn]∗ ≡ z3,nPn − Pnz3,n+riêi
, (2.8)

where we have assumed that the link under consideration connects two sites n and n+riêi.

This rule is applied to zi,n, ψi,n, χn and Gn. Similarly, for the anti-oriented link fields Pn,

such as zi,n, ξi,n, ξ3,n and Gn,

[z3, Pn]∗ ≡ z3,n+riêi
Pn − Pnz3,n. (2.9)

For site fields P ′
n, which are z3,n, λn, ψ3,n and dn, the operation is simply the commutator

[z3,n, P ′
n]∗ ≡ [z3,n, P ′

n]. Auxiliary fields Gn, Gn, dn and their transformation laws (2.5) are

– 4 –
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introduced to make the algebra,3 Q2 = Q2 = 0 and

{Q, Q} = −2
√

2[z3, ·]∗, (2.10)

to hold off-shell.

We define the BRST-like charge Q by

Q =
1√
2

(

Q − Q
)

, (2.11)

which induces

Qzi,n = ψi,n, Qψi,n =
√

2(z3,nzi,n − zi,nz3,n+êi
),

Qzi,n = −ǫijξj,n, Qξi,n =
√

2ǫij(z3,n+êj
zj,n − zj,nz3,n),

Qz3,n = ψ3,n − λn, Q(ψ3,n − λn) =
√

2[z3,n, zn],

Qd̃n = i[z3,n, ψ3,n + λn], Q(ψ3,n + λn) = −
√

2id̃n,

Qχn = G̃n, QG̃n =
√

2(z3,nχn − χnz3,n+ê1+ê2
),

Qξ3,n = G̃n, QG̃n =
√

2(z3,n+ê1+ê2
ξ3,n − ξ3,nz3,n),

Qz3,n = 0. (2.12)

This charge Q also satisfies

Q2 =
√

2[z3, ·]∗, (2.13)

where the right hand side is the gauge transformation with the parameter z3.

Now, for our purpose, it is crucial to rewrite the action (2.1) in a Q-exact form. Then

it can be confirmed that the action is Q-exact

S =
1

2g2
QΞ, (2.14)

Ξ =
∑

n

Tr
[ 1√

2
(ψ3,n − λn)[z3,n, z3,n] +

1√
2
(ψ3,n + λn)[id̃n − 2(zi,n−êi

zi,n−êi
− zi,nzi,n)]

+ ξ3,n(G̃n + 2
√

2ǫijzi,nzj,n+êi
) + χn(G̃n + 2

√
2ǫijzi,n+êj

zj,n)

+
√

2ψi,n(zi,nz3,n − z3,n+êi
zi,n) +

√
2ǫijξi,n−êj

(zj,n−êj
z3,n − z3,n−êj

zj,n−êj
)
]

.

(2.15)

We will use this form to clarify the relationships.

2.2 The N = (2, 2) Catterall model

Catterall’s N = (2, 2) supersymmetric lattice gauge theory [1] is based on the fact that the

N = (2, 2) supersymmetric Yang-Mills theory can be regarded equivalently as a topological

3Be careful that there is the minus sign in eq. (2.10) which cannot be appear from the anti-commutation

relation in the representation of super coordinates eq. (2.7). This difference comes from the fact that the

left operation of supersymmetry group corresponds to the right motion in parameter space as described in

the textbook written by Wess-Bagger [29].

– 5 –
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field theory [24]. The continuum action is thus expressed by an exact form by using a

nilpotent supercharge Q

S = βQTr

∫

d2x

(

1

4
η[φ, φ] − 2iχ12F12 + χ12B12 + ψµDµφ

)

(2.16)

where φ, φ are bosonic scalar fields, B12 is a bosonic anti-symmetric two tensor field, F12 is

a field strength of vector gauge fields Aµ. η, ψµ, χ12 are fermion fields with one component

spinor index. η is regarded as a scalar and ψµ are vectors and χ12 is an antisymmetric two-

tensor under twisted rotational symmetry. Parameter β represent the inverse of the square

of gauge coupling. Here, all fields are taken in the adjoint representation C =
∑

a CaT a

where T a are anti-hermitian generators in the gauge group and Ca are real. The gauge

symmetry is unitary U(M). Dµ is a covariant derivative with the adjoint representation

using the anti-hermitian matrices Aµ. Indices µ run from 1 to 2 which represent the

directions in two dimensional Euclidean space.

2.2.1 Catterall’s lattice action

In constructing the lattice action, Catterall utilizes the Kahler-Dirac formalism and the

lattice analogue of differential forms. He applied the criterion such that each scalars,

vectors and antisymmetric two-tensors should be put on sites, links, and the plaquettes,

respectively, on the lattice. Therefore, scalar fields φ, φ and η are put on sites and vectors

Aµ, ψµ reside on links and anti-symmetric two tensors χ12, B12 reside on plaquettes. Then

Catterall’s action is given as4

SL = −βQTr
∑

x

(

1

4
η†(x)[φ(x), φ̄(x)] − iχ†

12(x)F12(x) − iχ12(x)F12(x)†

+

(

1

2
χ†

12(x)B12(x) +
1

2
χ12(x)B†

12(x)

+
1

2
ψ†

µ(x)D+
µ φ̄(x) +

1

2
ψµ(x)(D+

µ φ̄(x))†
))

(2.17)

where U1,2 are bosonic link variables defined as Uµ = eAµ , and F12 are field strength of

gauge fields defined as

F12(x) = D+
1 U2(x) = U1(x)U2(x + 1) − U2(x)U1(x + 2) (2.18)

whose continuum limit is F12(x). D+
µ is covariant version of forward difference acting on a

scalar field f(x) and a vector field fµ(x) as [28]

D+
µ f(x) = Uµ(x)f(x + µ) − f(x)Uµ(x),

D+
µ fν(x) = Uµ(x)fν(x + µ) − fν(x)Uµ(x + ν). (2.19)

4We change the notation of Catterall model a little bit. The difference from the original notation in his

papers [1, 14] is as follows: In the action (2.17), we change the parameter β as −β. To take the continuum

limit (2.16) consistent with the anti-hermitian condition η† = −η imposed later on, this change is required.

We also change the notation χ
†
12
F12, χ12F

†
12

to −iχ
†
12
F12, −iχ12F

†
12

. By this change, the kinetic term of

gauge field can be taken as positive definite F12F
†
12

after the integration of auxiliary fields B12B
†
12

. If we

do not change the notation, kinetic term of the gauge fields becomes −F12F
†
12

. For the same reason, we

also change the 2χ12F12 to −i2χ12F12 in the target action (2.16).

– 6 –
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Note that, compared to the target theory (2.16), several new fields η†, φ†, φ
†
, ψ†

µ, χ†

and B†
12, appear in his action. These conjugate fields transform as complex conjugate of

original fields η, φ, φ, ψµ, χ and B12 under gauge transformation. Such conjugate fields are

required to preserve the lattice gauge symmetry and naturally appear in the Kahler-Dirac

formulation as described in section 3 of ref. [1].

His Q-transformation is defined by

QUµ = ψµ QU †
µ = ψ†

µ,

Qψµ = −D+
µ φ, Qψ†

µ = −(D+
µ φ)†,

Qχ12 = B12, Qχ†
12 = B†

12,

QB12 = [φ, χ12]
(12), QB†

12 =
(

[φ, χ12]
(12)

)†
,

Qφ = η, Qφ
†

= η†,

Qη = [φ, φ], Qη† = ([φ, φ])†,

Qφ = 0, (2.20)

where the superscript notation indicates a shifted commutator

[φ, χµν ](µν) = φ(x)χµν(x) − χµν(x)φ(x + µ + ν). (2.21)

Note that the Q-transformation laws satisfy following property

Q2 = (gauge transformation with the parameter φ). (2.22)

2.2.2 Extra degrees of freedom in Catterall’s theory

In the lattice action (2.17), there are extra degrees of freedom which the target theory

does not have. Variables φ, φ, η, ψµ, χ,B12, Aµ on the lattice are defined with general

complex matrices C =
∑

a(C
a + iDa)T a, where Ca,Da are real, while the variables in

the target theory are defined with anti-hermitian matrices C =
∑

CaT a. This is because

the vector and tensor fields reside on the links and plaquettes, which are bi-fundamental

representation under the lattice gauge group. The gauge transformation laws of generic

vector fields fµ(x) and anti-symmetric two tensors fµν(x) are assumed to be

fµ(x) → V (x)fµ(x)V (x + µ)†,

fµν(x) → V (x)fµν(x)V (x + µ + ν)†, (2.23)

where V (x), V (x+µ) and V (x+µ+ν) are independent unitary matrices. Anti-hermiticity

of the bi-fundamental variables cannot be maintained under the gauge transformation since

the following equality is not always satisfied

−(V (x)fµ(x)V (x + µ)†)† ≡ V (x + µ)fµ(x)V (x)† = V (x)fµ(x)V (x + µ)†,

−(V (x)fµν(x)V (x + µ + ν)†)† ≡ V (x + µ + ν)fµν(x)V (x)† = V (x)fµν(x)V (x + µ + ν)†,

due to the independence of gauge matrices V (x) and V (x+µ), V (x+µ+ν). Then such link

and plaquette fields must be complexified as (Ca + iDa)T a. Therefore the new conjugate

– 7 –
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fields η†, φ†, φ
†
, ψ†

µ, χ†, B†
12 are independent of η, φ, φ, ψµ, χ, B12.

5 Link gauge field Uµ are

also complexified, which are not unitary matrices, namely,

Uµ(x)U †
µ(x) 6= 1. (2.24)

They are defined as Uµ(x) = eAµ(x) with complexified gauge fields Aµ(x) whose hermitian

conjugate A†
µ(x) are not equal to −Aµ(x).

The continuum limit of the action (2.17) is different from eq. (2.16). The degrees of

freedom in eq. (2.17) are described with the general complex matrices
∑

a(C
a + iDa)T a

while the target theory (2.16) is defined with anti-hermitian matrices
∑

a CaT a.

2.3 Correspondence between N = (4, 4) CKKU lattice theory and Catterall’s

action

If we neglect one Q-multiplet, ψ3,n+λn and d̃n, the CKKU’s N =(4,4) lattice action (2.15)

and the Q-transformations (2.12) are same as the Catterall’s action (2.17) and his Q-

transformations (2.20). One can check the equivalence by identifying the fields as follows:

U1(x) ⇔
√

2z1,n, ψ1(x) ⇔
√

2ψ1,n,

U †
1 (x) ⇔

√
2z1,n, ψ†

1(x) ⇔ −
√

2ξ2,n

U2(x) ⇔
√

2z2,n, ψ2(x) ⇔
√

2ψ2,n

U †
2 (x) ⇔

√
2z2,n, ψ†

2(x) ⇔
√

2ξ1,n,

φ̄(x) ⇔
√

2z3,n, φ(x) ⇔
√

2z3,n,

χ12(x) ⇔ −i
√

2χn, χ†
12(x) ⇔ i

√
2ξ3,n,

B12(x) ⇔ −i
√

2G̃n, B†
12(x) ⇔ i

√
2G̃n,

F12(x) ⇔ 2En, F†
12(x) ⇔ 2E†

n,

η(x) ⇔
√

2(ψ3,n − λn), (2.25)

where

En = z1,nz2,n+ê1
− z2,nz1,n+ê2

,

E†
n = z2,n+ê1

z1,n − z1,n+ê2
z2,n. (2.26)

Here, in eq. (2.25), the left hand sides of the symbol ⇔ are the fields in Catterall’s theory

and the right hand sides are fields in CKKU’s theory.6 Due to the complexification of the

link and plaquette fields in “N = (2, 2)” Catterall’s model, link fields Uµ(x),U †
µ(x), etc

5It is not necessary to complexify the site fields η, φ, φ. They can keep the anti-hermiticity under

the gauge transformation since they are in the adjoint representation. Therefore η† = −η, φ
†

= −φ and

φ† = −φ can be taken on the lattice. Not only such a condition but also the condition η† = η, φ
†

= φ and

φ† = −φ can be taken.
6In eq. (2.25), we impose the condition

φ
†

= φ, η
† = η, φ

† = −φ, (2.27)

on the site fields.
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of the Catterall’s model can be identified as the complex link fields zi,n,zi,n, etc of the

“N = (4, 4)” CKKU model in the above correspondence. Note that d̃n is a partner of

ψ3,n + λn under the Q-transformation

Qd̃n = i[z3,n, ψ3,n + λn], Q(ψ3,n + λn) = −
√

2id̃n, (2.28)

as in eq. (2.12). Other fields, except for z3,n whose Q-transformation is Qz3,n = 0, do not

appear in this transformation. Therefore the absence of the set d̃n and ψ3,n + λn does not

affect the Q-transformation laws of other fields. Moreover, since the set d̃n and ψ3,n + λn

exists only in one term

Q
∑

n

Tr
1√
2
(ψ3,n + λn)[id̃n − 2(zi,n−êi

zi,n−êi
− zi,nzi,n)] (2.29)

among the terms of CKKU action (2.15), the action (2.15) keep the Q-exact form and the

Q-symmetry under the truncation. As a side remark, correspondences among the symbol

of lattice sites and the gauge coupling of both theories are x ⇔ n, −β ⇔ 1
2g2 .

3. Relationship between Catterall model and Sugino’s model

As described in section 2.2.2, Catterall’s N = (2, 2) action has extra degrees of freedom

which do not present in the target N = (2, 2) theory. Therefore it is necessary to truncate

the extra degrees of freedom to identify his model with an N = (2, 2) lattice model which

contains the correct number of degrees of freedom of the target theory. If this is performed

in a naive way, breaking of the supersymmetry on the lattice would be resulted. There exists

a way of truncation which does not break the supersymmetry on the lattice. Then, we find,

after this truncation, that the Catterall’s theory becomes the N = (2, 2) supersymmetric

lattice gauge theory being similar to the Sugino model in ref. [2].

3.1 N = (2, 2) lattice model by Sugino

To explain the derivation of the N = (2, 2) Sugino type model from the Catterall’s N =

(2, 2) lattice action, we briefly explain the Sugino’s original N = (2, 2) lattice model in [2].

His lattice action is

SLAT
N=2 = Q

1

2g2
0

∑

x

Tr

[

1

4
η(x) [φ(x), φ̄(x)] − iχ(x)Φ(x) + χ(x)H(x)

+ i
d

∑

µ=1

ψ′
µ(x)

(

φ̄(x) − Uµ(x)φ̄(x + µ̂)Uµ(x)†
)

]

, (3.1)

where

Φ(x) = −i [U12(x) − U21(x)] , (3.2)

and Uµν(x) are plaquette variables

Uµν(x) ≡ Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)†Uν(x)†. (µ, ν = 1, 2) (3.3)
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The target action of this model is the N = (2, 2) super Yang-Mills action. In this model,

the gauge fields are promoted to the compact unitary variables

Uµ(x) = eiaAµ(x) (3.4)

on the link (x, x + µ). ’a’ stands for the lattice spacing, and x ∈ Z
2. All other fields sit on

sites. Note that he uses the dimensionless variable in his paper. The Q-transformations of

this model are as follows

QUµ(x) = iψ′
µ(x)Uµ(x),

Qψ′
µ(x) = iψ′

µ(x)ψ′
µ(x) − i

(

φ(x) − Uµ(x)φ(x + µ̂)Uµ(x)†
)

,

Qφ(x) = 0,

Q~χ(x) = ~H(x), Q ~H(x) = [φ(x), ~χ(x)],

Qφ̄(x) = η(x), Qη(x) = [φ(x), φ̄(x)]. (3.5)

These Q-transformations satisfy following property

Q2 = (infinitesimal gauge transformation with the parameter φ ). (3.6)

The action (3.1) is invariant under the Q-transformation since the action (3.1) is written by

the Q-transformation of gauge invariant quantity. After the Q-operation, the action (3.1)

takes the form

SLAT
N=2 =

1

2g2
0

∑

x

Tr

[

1

4
[φ(x), φ̄(x)]2 + H(x)H(x) − iH(x)Φ(x)

+
d

∑

µ=1

(

φ(x) − Uµ(x)φ(x + µ̂)Uµ(x)†
) (

φ̄(x) − Uµ(x)φ̄(x + µ̂)Uµ(x)†
)

−1

4
η(x)[φ(x), η(x)] − χ(x)[φ(x), χ(x)]

−
d

∑

µ=1

ψ′
µ(x)ψ′

µ(x)
(

φ̄(x) + Uµ(x)φ̄(x + µ̂)Uµ(x)†
)

+ iχ(x)QΦ(x) − i
d

∑

µ=1

ψ′
µ(x)

(

η(x) − Uµ(x)η(x + µ̂)Uµ(x)†
)



 .

3.2 Derivation of the N = (2, 2) Sugino type model by a truncation of extra

degrees of freedom in the Catterall’s model

In this subsection, we show that the Catterall’s N = (2, 2) lattice model becomes N = (2, 2)

lattice model of the Sugino type if we truncate extra degrees of freedom in the Catterall’s

model by a way keeping supersymmetry on the lattice.
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We start from the Catterall action

SL = −βQTr
∑

x

(

1

4
η†(x)[φ(x), φ̄(x)] − iχ†

12(x)F12(x) − iχ12(x)F12(x)†

+

(

1

2
χ†

12(x)B12(x) +
1

2
χ12(x)B†

12(x)

+
1

2
ψ†

µ(x)D+
µ φ̄(x) +

1

2
ψµ(x)(D+

µ φ̄(x))†
))

, (3.7)

and the Q-transformation laws (2.20)

QUµ = ψµ QU †
µ = ψ†

µ,

Qψµ = −D+
µ φ, Qψ†

µ = −(D+
µ φ)†,

Qχ12 = B12, Qχ†
12 = B†

12,

QB12 = [φ, χ12]
(12), QB†

12 =
(

[φ, χ12]
(12)

)†
,

Qφ = η, Qφ
†

= η†,

Qη = [φ, φ], Qη† = ([φ, φ])†,

Qφ = 0. (3.8)

If we can possess the following property of Q-transformation (2.22);

Q2 = (gauge transformation with parameter φ) (3.9)

even after truncation, we can keep supersymmetry under the truncation.

To perform such truncation, we take the constraint Uµ(x)U †
µ(x) = 1, namely A†

µ(x) =

−Aµ(x) at first. Since Uµ(x)U †
µ(x) = 1 is not dynamical quantity, we obtain following

conditions

Q(Uµ(x)U †
µ(x)) = 0, QUµ(x) = ψµ(x), QU †

µ(x) = ψ†
µ(x). (3.10)

By this condition, ψ†
µ(x) is described with ψµ(x) as

ψ†
µ(x) = −U †

µ(x)ψµ(x)U †
µ(x), (3.11)

and ψ†
µ(x) is no longer independent of ψµ(x). Then if we define a site fermion fields ψ′

µ(x)

as

ψ′
µ(x) = ψµ(x)U †

µ(x), (3.12)

two fermions ψµ(x) and ψ†
µ(x) are described only by one fermion variable ψ′

µ(x) as

ψµ(x) = ψ′
µ(x)Uµ(x), ψ†

µ(x) = −Uµ(x)†ψ′
µ(x). (3.13)

This ψ′
µ(x) becomes naturally anti-hermitian since

(ψ′
µ(x))† = (ψµ(x)U †

µ(x))† = Uµ(x)ψ†
µ(x) = −ψµ(x)U †

µ(x) = −ψ′
µ(x). (3.14)

This anti-hermitian property can be kept under the gauge symmetry since the site fields

are adjoint representation. Then we take ψ′
µ(x) as a fundamental fermionic variable rather
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than ψµ(x). From this expression and the Q-transformation of ψµ; Qψµ(x) = φ(x)Uµ(x)−
Uµ(x)φ(x + µ), the Q-transformation law of ψ′

µ(x) is obtained naturally as

Qψ′
µ(x) = (Qψµ(x)U †

µ(x))

= (Qψµ(x))U †
µ(x) − ψµ(x)(QU †

µ(x))

= ψ′
µ(x)ψ′

µ(x) + (φ(x) − Uµ(x)φ(x + µ)U †
µ(x)). (3.15)

These conditions Uµ(x)U †
µ(x) = 1 and the eqs. (3.10) -(3.15) give a way to truncate extra

degrees of freedom in gauge fields Uµ(x),U †
µ(x) and their partners ψµ(x), ψ†

µ(x) without

breaking of the supersymmetry on the lattice.

For φ(x), φ(x), η(x), we impose η†(x) = −η(x), φ
†
(x) = −φ(x) and φ†(x) = −φ(x)

to remove the extra degrees of freedom. This condition can be kept under the gauge

transformation since they are in adjoint representation. Since each φ and φ
†

compose the

Q-multiplets with η and η† respectively, this condition does not break the supersymmetry

on the lattice.

To truncate extra degrees of freedom in χ12, χ†
12, B12 and B†

12 without breaking of the

supersymmetry, we impose following constraints

χ12(x) = χ(x)U1(x)U2(x + 1),

χ†
12(x) = −U †

2(x + 1)U †
1 (x)χ(x),

B12(x) = H(x)U1(x)U2(x + 1),

B†
12(x) = −U †

2(x + 1)U †
1 (x)H(x).

(3.16)

Here χ(x) and H(x) are anti-hermitian site fields. χ(x) and H(x) are obtained by absorbing

the link gauge fields Uµ(x) to χ12(x) and B12(x) as χ(x) = χ12(x)U2(x + 1)†U1(x)† and

H(x) = B12(x)U2(x + 1)†U1(x)†. By the above condition, χ†
12(x) and B†

12(x) are no longer

independent of χ12(x) and B12(x), the degrees of freedom in these fields are reduced to

two anti-hermite fields χ(x) and H(x). By performing the Q-transformation on right hand

sides and left hand sides of the above definitions eq. (3.16), one can immediately check that

the Q-transformation on χ(x), H(x);

Qχ(x) = H(x) + χ(x)ψ′
1(x) + χ(x)U1(x)ψ′

2(x + 1)U †
1 (x) (3.17)

QH(x) = φ(x)χ(x) − χ(x)U1(x)U2(x + 1)φ(x + 1 + 2)U †
2 (x + 1)U †

1 (x)

−H(x)ψ′
1(x) − H(x)U1(x)ψ′

2(x + 1)U †
1 (x) (3.18)

is obtained consistently. Note that Q2 acts on these χ(x) and H(x) as the infinitesimal

gauge transformation with the parameter φ, namely

Q2χ(x) = [φ(x), χ(x)], Q2H(x) = [φ(x),H(x)]. (3.19)

By these conditions,

1

2

(

χ†
12(x)B12(x) + χ12(x)B†

12(x)
)

(3.20)
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becomes

−χ(x)H(x). (3.21)

One can check it by substituting eq. (3.16) to the Catterall action (3.7). The term

−iχ†
12(x)F12(x) − iχ12(x)F†

12(x) (3.22)

becomes

iχ(x)Φ(x) (3.23)

where

Φ(x) = U1(x)U2(x + 1̂)U †
1 (x + 2̂)U †

2 (x) − U2(x)U1(x + 2̂)U †
2 (x + 1̂)U †

1 (x). (3.24)

Another term

+
1

2
ψ†

µ(x)D+
µ φ̄(x) +

1

2
ψµ(x)(D+

µ φ̄(x))† (3.25)

becomes

−ψ′
µ(x)(φ̄(x) − Uµφ̄(x + µ)U †

µ(x)). (3.26)

It can also be checked by substitution of eq. (3.13) to the action (3.7). Therefore, Catterall’s

action (3.7) becomes

SL = βQTr
∑

x

(

1

4
η(x)[φ(x), φ̄(x)] + χ(x)

(

H(x) − iΦ(x)

)

−ψ′
µ(x)(φ̄(x) − Uµφ̄(x + µ)U †

µ(x))

)

(3.27)

in the truncation. The Q-transformation laws are

QUµ(x) = ψ′
µ(x)Uµ(x),

Qψ′
µ(x) = ψ′

µ(x)ψ′
µ(x) + (φ(x) − Uµ(x)φ(x + µ)U †

µ(x)),

Qχ(x) = H(x) + χ(x)ψ′
1(x) + χ(x)U1(x)ψ′

2(x + 1)U †
1 (x)

QH(x) = φ(x)χ(x) − χ(x)U1(x)U2(x + 1)φ(x + 1 + 2)U †
2 (x + 1)U †

1 (x)

−H(x)ψ′
1(x) − H(x)U1(x)ψ′

2(x + 1)U †
1 (x)

Qφ(x) = η(x),

Qη(x) = [φ(x), φ(x)],

Qφ(x) = 0. (3.28)
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The Q-transformation laws (3.8) become eq. (3.28) by the truncation. After the Q-

operation, this action (3.27), becomes

SL = β
∑

x

Tr

(

1

4
[φ(x), φ(x)]2 + H(x)(H(x) − iΦ(x))

−ψ′
µ(x)ψ′

µ(x)(φ̄(x) + Uµφ̄(x + µ)U †
µ(x))

−(φ(x) − Uµφ(x + µ)U †
µ(x))(φ̄(x) − Uµφ̄(x + µ)U †

µ(x)) − 1

4
η(x)[φ(x), η(x)]

−χ(x)
(

φ(x)χ(x) − χ(x)U1(x)U2(x + 1)φ(x + 1 + 2)U †
2 (x + 1)U †

1 (x)
)

+iχ(x)U1(x)U2(x + 1)Q(U †
2 (x + 1)U †

1 (x) − U †
1(x + 2)U2(x))

−iχ(x)Q(U1(x)U2(x + 1) − U2(x)U1(x + 2))U †
2 (x + 1)U †

1 (x)

+ψ′
µ(x)(η(x) − Uµη(x + µ)U †

µ(x))

)

. (3.29)

This action eqs. (3.27), (3.29) has a correct continuum limit eq. (2.16) while the original

Catterall action (3.7) does not have.

Note that the action (3.27), (3.29) is almost same as Sugino’s action (3.1) and (3.7).

Only the fermionic terms

−χ(x)
(

φ(x)χ(x) − χ(x)U1(x)U2(x + 1)φ(x + 1 + 2)U †
2 (x + 1)U †

1 (x)
)

(3.30)

and

+iχ(x)U1(x)U2(x + 1)Q(U †
2 (x + 1)U †

1 (x) − U †
1 (x + 2)U2(x))

−iχ(x)Q(U1(x)U2(x + 1) − U2(x)U1(x + 2))U †
2 (x + 1)U †

1 (x) (3.31)

are different from their corresponding terms −χ(x)[φ(x), χ(x)] and iχ(x)QΦ(x) in Sugino’s

original model (3.1), (3.7). After the integration over the auxiliary field H(x), the gauge

kinetic term

−β
∑

x

Tr
1

4
Φ2(x) = −β

∑

x

Tr
1

4
(U12(x) − U21(x))2 (3.32)

is obtained. This is same as the gauge kinetic term in Sugino’s original model. Therefore,

also the action (3.27), (3.29) has the vacuum degenerate problem which the original Sugino

model encountered in ref. [2].7

Also the Q-transformation laws after the truncation (3.28) are almost same as the Q-

transformation laws of the Sugino’s model (3.5). Only the transformation laws of auxiliary

field H(x) and its partner χ(x) in (3.28) are different from the Qχ(x) = H(x) and QH(x) =

[φ(x), χ(x)] of Sugino’s original model.

As a result, Catterall’s model becomes the theory which is almost same as the Sugino’s

theory by the truncation of extra degrees of freedom which does not break supersymmetry.

7Sugino has proposed several treatments to solve this problem in refs. [2, 9].
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4. Relationship between Sugino’s model and CKKU model

Due to the two relationships described in section 2 and 3, it is obvious that the model of the

Sugino type can be derived by the truncation of degrees of freedom in the CKKU model.

Due to the relationship between CKKU model and Catterall’s model, the method to derive

the Sugino type model from the Catterall’s theory is applicable to derive the model of the

Sugino type from CKKU model. Since the explanation of the derivation is mere repetition

of the description in the subsection 3.2, we put off the explanation of the derivation in the

appendix A.

In this section, we explain that the derivation discards the fluctuations along the

flat-direction around the vacuum expectation value 1√
2a

of scalar potential existing in the

CKKU model.8

To explain it, we explain the deconstruction and the fluctuation in the CKKU model

at first. Then we explain that the derivation truncates such fluctuations.

4.1 The deconstruction and the fluctuations along the moduli space in CKKU

model

To realize the kinetic term in CKKU model, performing the “deconstruction” is re-

quired.(see also section 3.3 in ref. [3].) The deconstruction is the field redefinition of the

bosonic link fields zi,n expanding around the vacuum expectation value

〈zi,n〉 =
1√
2a

1M , (4.1)

where the 1M is M × M unit matrix and the a is interpreted as lattice spacing.

To perform the expansions, there are two ways of representations; Cartesian decom-

position and the polar decomposition. These two decomposition give the same continuum

limit as Unsal proved in ref. [30]. CKKU adopts the Cartesian decomposition, eq. (3.16)

in ref. [3], which represents the complex link variables by the sum of hermitian matrices

and the antihermitian matrices. But, to perform the derivation of the Sugino type model,

we have to adopt the polar decomposition [30 – 32].

In the polar decomposition, the bosonic link fields zi,zi (i = 1, 2) are uniquely repre-

sented as a product of hermitian matrices (1
a + si,n) (i = 1, 2), which represent a radial

direction and so have positive eigenvalues only, and unitary matrices Ui,n

zi,n =
1√
2

(

1

a
1M + si,n

)

Ui,n, zi,n =
1√
2
U †

i,n

(

1

a
1M + si,n

)

, (4.2)

where lattice spacing 1√
2a

and the scalar fields si,n sit on sites and Ui,n are link fields written

by the gauge fields vi,n as Ui,n = eiavi,n . Comparing with the Cartesian decomposition in

ref. [3], this representation of decomposition has advantage of the manifest gauge symmetry.

This representation is required to keep the gauge symmetry under the truncation.

8In this section, we take into account the the flat-directions of moduli space while we neglect such effects

in section 2; we showed the relationship between the CKKU model and the Catterall model without the

consideration of such effects.
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Note that, in the CKKU model, the lattice spacing is dynamical quantity characterized

as the vacuum expectation value 1√
2a

of scalar potential. The scalar fields si are fluctuations

around the 1√
2a

.

The CKKU action has noncompact moduli space consisting of all constant scalar fields

satisfying [s1, s2] = 0. The integral of these modes are formally divergent, the expan-

sion (4.2) is then poorly defined. (Even if we take the Cartesian decomposition taken in

ref. [3], such instability of the vacuum occurs.) To suppress the large fluctuation along the

flat directions, the original CKKU model introduced the moduli fixing mass term

∑

n

Tr

[

(

zi,nzi,n − 1

2a2

)2
]

=
∑

n

Tr
1

4





(

(

si,n +
1

a

)2

− 1

a2

)2


 . (4.3)

4.2 Truncation of the flat-direction by the derivation of the Sugino type model

When we derived the model of the Sugino type from the Catterall model, we imposed the

condition that the link variables become unitary, namely,

Uµ(x)U †
µ(x) = 1. (4.4)

Therefore, from the correspondence between the fields of CKKU model and the ones of

Catterall model (2.25), complex link fields zi,n in the CKKU model become “unitary” link

variables to derive the model of the Sugino type. This means that dynamical degrees

of freedom which correspond to radial directions of the links zi, zi are discarded in the

derivation, namely,

zi,n =
1√
2a

Ui,n, zi,n =
1√
2a

U †
i,n, (4.5)

where the vacuum expectation value 1√
2a

cannot be removed since the link fields zi, zi have

mass dimension 1.

Note that the derivation of the Sugino type model from the CKKU model discards the

fluctuations si around the vacuum expectation value 1√
2a

. Then, also the large fluctuations

of si along the flat-directions which cause the serious instability of the vacuum are removed

under the derivation. Therefore we do not have to introduce the moduli fixing mass term

in the derived Sugino type model. Moreover we can derive the model of the Sugino type

from the CKKU model even if we introduce the moduli fixing mass term (4.3),

∑

n

Tr

[

(

zi,nzi,n − 1

2a2

)2
]

=
∑

n

Tr
1

4





(

(

si,n +
1

a

)2

− 1

a2

)2


 (4.6)

in the CKKU model. This is because the mass term naturally vanishes under the truncation

si,n = 0.

5. Corresponding truncation in the continuum theory

The derivation of the Sugino type model from the CKKU model (or Catterall model) can

be interpreted as the lattice analogue of the derivation of the continuum N = (2, 2) theory

from the continuum N = (4, 4) theory by the truncation of several Q-multiplets.
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We first consider the continuum N = (4, 4) supersymmetric gauge theory action

S =
1

g2
2

∫

d2xQΞ (5.1)

where

Ξ = Tr

[

1

4
η[φ, φ]+χR(HR− iER)+χ1(H1− iE1)+χ2(H2− iE2)+

1

2

{

ψµDµφ+ψsi
[si, φ]

}

]

,

and

ER = −2(D1s1 + D2s2),

E1 = 2(D1s2 − D2s1),

E2 = 2(i[s1, s2] + F12),

F12 = −i[D1,D2].

Here the indices µ, i run from 1 to 2, and the repeated indices are summed. si, φ, φ are

bosonic scalar fields and HR, Hi are auxiliary fields and vµ are gauge fields. The others

ψsi
, ψµ, χR, χi are fermionic fields. The all fields are in adjoint representation of the gauge

group. Dµ is the covariant derivative. Q-transformation laws are

Qsi = (ψsi
), Qψsi

= [φ, si],

Qφ = η, Qη = [φ, φ],

Qvµ = ψµ, Qψµ = iDµφ,

QχR = HR, QHR = [φ, χR],

Qχi = Hi, QHi = [φ, χi] (i = 1, 2),

Qφ = 0. (5.2)

In each Q-transformation law of each Q-multiplet, only the components of the multiplet

and φ, whose transformation is Qφ = 0, appear. Also note that the twice operation of

Q generates the infinitesimal gauge transformation with the parameter φ. The action

is invariant under the Q-operation since it is written as Q-transformation of the gauge

invariant quantity.

To derive the N = (2, 2) supersymmetric theory from the N = (4, 4) theory, we discard

following Q-multiplets;

1. χR and HR, which are contained only in the term χR(HR − iER) among the terms in

Ξ of eq. (5.1)

2. χ1 and H1 contained only in the term χ1(H1 − iE1)

3. si and ψsi
contained only in 1

2ψsi
[si, φ] and 2χ2[s1, s2].

If we substitute the condition

si = ψsi
= χR = HR = H1 = χ1 = 0, (5.3)

– 17 –
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the action (5.1) reduces to

S(2,2) =
1

g2
2

∫

d2xQΞ′ (5.4)

Ξ′ = Tr

[

1

4
η[φ, φ] + χ(H − iE) +

1

2

{

ψµDµφ

}

]

where

E = 2(F12),

F12 = −i[D1,D2].

Ξ in eq. (5.1) reduces to the above gauge invariant quantity Ξ′ under the truncation.

Note that the absence of the three Q-multiplets si and ψsi
, etc does not change the

Q-transformations of other fields. This is because only the remaining fields η, φ, etc,

which survive under the truncation, appear in the Q-transformation laws of the remaining

fields. Moreover the condition (5.3) is kept under the Q-transformation. Also note this ac-

tion (5.4) is also written as the Q-operation on the gauge invariant quantity Ξ′. Therefore

the action (5.4) keeps the Q-symmetry. This action (5.4) is equivalent to the continuum

N = (2, 2) supersymmetric gauge theory. Finally, we obtain the N = (2, 2) theory by the

truncation of degrees of freedom in the N = (4, 4) theory.

The derivation of the Sugino type model from the CKKU model (or Catterall model)

is the lattice analogue of the derivation of this continuum N = (2, 2) theory (5.4) from

N = (4, 4) theory.

6. Conclusion

In this paper, we clarified the relationship between several, seemingly quite different, super-

symmetric lattice models preserving supersymmetry on the lattice. First we showed that

Catterall’s model can be embedded in CKKU’s model as a sub-sector. Also we clarified

that a model of the Sugino type naturally appears when we truncate the degrees of freedom

in Catterall’s model in a way which does not break the supersymmetry on the lattice. We

also show that the N = (4, 4) CKKU model can give the Sugino type model if we truncate

the fluctuations around the vacuum expectation value 1√
2a

and other degrees of freedom.

These relationships would indicate an underlying essential structure which any lattice

formulations preserving partial supersymmetry possess. Further understanding of this

structure would be very useful to develop lattice formulations of supersymmetric gauge

theory.

Since the Catterall’s lattice model and the model of Sugino type can be built also

from the CKKU lattice model which is constructed from super matrix model, we would be

able to utilize the super matrix model analysis for these lattice formulations. There is a

possibility that also Catterall’s model and the Sugino type model could be described using

the matrix model analysis.
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A. Derivation of the N = (2, 2) Sugino type model from CKKU model

We will explicitly show the derivation of the Sugino type model from the N = (4, 4) CKKU

lattice model. Here we utilize the technology to derive the N = (2, 2) lattice theory from

N = (4, 4) lattice theory proposed in ref. [32].

At first, we truncate some scalars and auxiliary fields by imposing d̃n = si = ψ3,n+λn =

0. After this truncation, the expansion eq. (4.2) of the bosonic link fields zi,n, zi,n become

zi,n =
1√
2a

Ui,n, zi,n =
1√
2a

U †
i,n. (A.1)

Note that zi,n are no longer independent of zi,n due to the absence of the scalar fields

si,n. Since only the scalar fields si can give the dynamical fluctuations and the radiative

corrections of lattice spacing, the lattice spacing 1√
2a

is no longer dynamical quantity. The

product of these two link fields zi,n and the zi,n combine the non-dynamical lattice spacing

as zi,nzi,n = 1
2a2 . Therefore, we can take a condition that the Q-transformation of the

product zi,nzi,n = 1
2a2 vanishes. Thus, from eq. (A.1), we immediately obtain

Qzi,n =
1√
2a

QUi,n = ψi,n, Qzi,n =
1√
2a

QU †
i,n = −ǫijξj,n,

Q(zi,nzi,n) = Q 1

2a2
= 0. (A.2)

From eqs. (A.1), (A.2), we obtain the constraints between fermions ψi and ǫijξj

− ǫijξj,n = −U †
x,nψi,nU †

x,n. (A.3)

By this definition, half of degrees of freedom in complex fermion fields ψi,n and ξi,n are

discarded. ξi,n are no longer independent of ψi,n. Due to the relationships (A.3), we can

represent the above link fermions ψi,n, ξi,n by absorbing the link variables as

ψi,n = iψi
nUi,n, (A.4)

−ǫijξj,n = −iU †
i,nψi

n, (A.5)

where ψi
n are site fermions in the adjoint representation. The Q-transformations of the site

fermions ψi
n are naturally obtained as

Qψi
n =

√
2aψi

nψi
n − i

1

a

(

z3,n − Ui,nz3,n+iU
†
i,n

)

. (A.6)
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We can also discard the half of degrees of freedom in the fermion fields χn and ξ3,n by

imposing the condition

χn = −χ′
nU1,nU2,n+ê1

, (A.7)

ξ3,n = −U †
2,n+ê1

U †
1,nχ′

n, (A.8)

where χ′
n is a site fermion. By this condition, χn is no longer independent of ξ3,n. The trun-

cation of the degrees of freedom in the bosonic auxiliary fields G̃n, G̃n are also performed

by absorbing the link fields as,

G̃n = Qξ3,n ≡ −U †
2,n+ê1

U †
1,nHn

= −(
√

2aξ1,n+ê1
U †

1,nχ′
n −

√
2aU †

2,n+ê1
ξ2,nχ′

n + U †
2,n+ê1

U †
1,nQχ′

n),

G̃n = Qχn ≡ −HnU1,nU2,n+ê1

= −(Qχ′
nU1,nU2,n+ê1

−
√

2aχ′
nψ1,nU2,n+ê1

−
√

2aχ′
nU1,nψ2,n+ê1

), (A.9)

where Hn is a bosonic site field. The Q-transformation laws of χ′
n and Hn are

Qχ′
n = Hn + i

√
2aψ1

nχ′
n + i

√
2aU1,nψ2

n+ê1
U †

1,nχ′
n,

QHn =
√

2

(

−(χ′
nz3,n − U1,nU2,n+ê1

z3,n+ê1+ê2
U †

2,n+ê1
U †

1,nχ′
n)

+iaU1,nψ2
n+ê1

U †
1,nHn + iaψ1

nHn

)

. (A.10)

The above conditions eqs. (A.2)–(A.10) in N = (4, 4) CKKU lattice theory are almost

same as the truncation conditions eqs. (3.10)–(3.18) which derive the model of the Sugino

type from Catterall’s model in the subsection 3.2. Then, the property

Q2 = (infinitesimal gauge transformation with parameter z3) (A.11)

is kept even after the truncations. Therefore, the N = (4, 4) CKKU lattice action can be

truncated to N = (2, 2) lattice action with a preserved supercharge Q. The N = (2, 2)

lattice action is described as follows,

S =
1

2g2
QΞ′ (A.12)

where

Ξ′ =
∑

n

Tr

[

1√
2
(ψ3,n − λn)[z3,n, z3,n] (A.13)

+2χ′
nHn − i

√
2

a2
χ′

n(Φn) +
2i

a
ψi

n(z3,n − Ui,nz3,n+êi
U †

i,n)

]

, (A.14)

Φn = −i
(

U1,nU2,n+ê1
U †

1,n+ê2
U †

2,n − U2,nU1,n+ê2
U †

2,n+ê1
U †

1,n

)

. (A.15)
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The Q-transformations of the fields in eq. (A.15) are summarized as

QUi,n = iψi
nUi,n,

Qψi
n =

√
2aψi

nψi
n − i

1

a

(

z3,n − Ui,nz3,n+êi
U †

i,n

)

,

Qz3,n = 0,

Qχ′
n = Hn + i

√
2aψ1

nχ′
n + i

√
2aU1,nψ2

n+ê1
U †

1,nχ′
n,

QHn =
√

2
(

− (χ′
nz3,n − U1,nU2,n+ê1

z3,n+ê1+ê2
U †

2,n+ê1
U †

1,nχ′
n)

+iaU1,nψ2
n+ê1

U †
1,nHn + iaψ1

nHn

)

,

Qz3,n = ψ3,n − λn, Q(ψ3,n − λn) =
√

2[z3,n, z3,n]. (A.16)

After the Q-operation, the action becomes

S =
1

2g2

∑

n

Tr

[

[z3,n, z3,n]2 + 2HnHn − i

√
2

a2
HnΦn

+

2
∑

i=1

2

a2

(

z3,n − Ui,nz3,n+êi
U †

i,n

)(

z3,n − Ui,nz3,n+êi
U †

i,n

)

− 1√
2
(ψ3,n − λn)[z3,n, (ψ3,n − λn)]

−2
√

2χ′
n(z3,nχ′

n − χ′
nU †

1,nU2,n+ê1
z3,n+ê1+ê2

U †
2,n+ê1

U †
1,n)

−
2

∑

µ=1

2
√

2ψi
nψi

n

(

z3,n + Ui,nz3,n+ê1
U †

i,n

)

+

√
2

a2
χ′

nU1,nU2,n+ê1
Q(U †

1,n+ê2
U †

2,n − U †
2,n+ê1

U †
1,n)

+

√
2

a2
χ′

nQ(U1,nU2,n+ê1
− U2,nU1,n+ê2

)U †
2,n+ê1

U †
1,n

− i

2
∑

i=1

2

a
ψi

n

(

(ψ3,n − λn) − Ui,n(ψ3,n+êi
− λn+êi

)U †
i,n

)

]

. (A.17)

One can confirm that the Q-transformation (A.16) and the action (A.15), (A.17) are

almost same as Q-transformation in the Sugino’s model (3.5) and his action (3.1), (3.7),

by following identifications,

η(x) ⇔
√

2a3/2(ψ3,n − λn), φ(x) ⇔
√

2a z3,n,

χ(x) ⇔
√

2a3/2χ′
n, H(x) ⇔

√
2a2Hn,

Uµ(x) ⇔ Ui,n, ψ′
µ(x) ⇔

√
2a3/2ψi

n,

φ(x) ⇔
√

2a z3,n,

µ ⇔ i, Q ⇔ a1/2Q,

1

2g2
0

⇔ 1

2g2
a−4. (A.18)
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Only the several fermionic terms in eq. (A.17)

+

√
2

a2
χ′

nU1,nU2,n+ê1
Q(U †

1,n+ê2
U †

2,n − U †
2,n+ê1

U †
1,n)

+

√
2

a2
χ′

nQ(U1,nU2,n+ê1
− U2,nU1,n+ê2

)U †
2,n+ê1

U †
1,n (A.19)

and

−2
√

2χ′
n(z3,nχ′

n − χ′
nU †

1,nU2,n+ê1
z3,n+ê1+ê2

U †
2,n+ê1

U †
1,n) (A.20)

are different from their corresponding terms η(x)[φ(x), η(x)] and −iχ(x)QΦ(x) in the orig-

inal Sugino model (3.7). In the Q-transformation laws eq. (A.16), only the transforma-

tion laws of auxiliary fields and their partner χ′
n are different from ones of the Sugino’s

model (3.5). Then the N = (2, 2) lattice gauge theory of the Sugino type is derived from

the N = (4, 4) CKKU lattice theory by the suitable truncation of fields.

Although we have derived from the CKKU model without moduli fixing mass term,

we can derive the same model even if we introduce the moduli fixing mass term

∑

n

Tr

[

(

zi,nzi,n − 1

2a2

)2
]

=
∑

n

Tr
1

4





(

(

si,n +
1

a

)2

− 1

a2

)2


 (A.21)

in the CKKU model. This is because such mass term naturally vanishes under the trun-

cation si,n = 0.
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